A Comparison of Surveys Based on Probability Versus Non-Probability Sampling Approaches

Presenter: Gordon Willis, National Cancer Institute, NIH
Willisg@mail.nih.gov

Authors: (Next Slide)

AAPOR
May 15, 2015
Authors: A Multi-Agency, Multi-Disciplinary Effort

- **National Cancer Institute (NCI), Division of Cancer Control and Population Sciences**: Erin Kent, Benmei Liu, Janet S. de Moor, Gordon Willis, Maggie Wilson, K. Robin Yabroff
- **LIVESTRONG Foundation**: Stephanie Nutt
- **Centers for Disease Control and Prevention (CDC), Division of Cancer Prevention and Control**: Donatus Ekwueme, Juan Rodriguez
- **Emory University**: Katherine S. Virgo
Perennial Question: Can we Rely on Results from Non-Probability-Based Surveys?

- **Limbo Principle:** “How low can you go”? If response rates to probability-based sample surveys drop enough, should we just go with a self-selected sample?

- **Bandwagon Principle:** Web panels, social media, other non-probability approaches seem like the ‘modern’ approach: Are the probability-sample types Luddites/dinosaurs?

- **Magic Wand Principle:** Can’t we make use of post-stratification adjustments, propensity scores, to force non-probability sample into line?
Our Study Focuses on the Magic Wand: Statistical Adjustment to the Non-Probability Sample

- **AAPOR Task Force on Non-Probability Sampling:** Cites Tourangeau, Conrad, Couper (2013):
 - Reviewed 8 studies involving adjustment procedures
 - Compare non-prob results with those of prob-based calibration study
 - Conclude that adjustment is useful, but only a partial remedy for bias.

- **AAPOR Task Force recommendations:**
 - Develop model-based methods for non-prob studies
 - Figure out what makes the data from a non-prob survey ‘fit for purpose’
Compared Cancer Survivors’ Financial Burden and Employment from Two Sources

1) **2011 Medical Expenditure Panel Study (MEPS) Experiences with Cancer follow-back survey (CSAQ)**
 - Self-administered (paper-based) supplement to the core MEPS
 - Representative of (18+) US non-institutionalized household population of cancer survivors
 - MEPS annual RR=54.9%; CSAQ RR=90%
 - Analytic sample: n = 1,203
Compared Cancer Survivors’ Financial Burden and Employment from Two Sources

2) **2012 LIVESTRONG Survey**
 - Same questionnaire as MEPS CSAQ
 - **Web-based**, opt-in, available to cancer survivors via email and social media
 - \(n = 5,394 \): *Response rate is undefined*
Research Question: Can a Non-Probability Survey be an Alternative to a Probability Survey?

Substitution: Could we use LIVESTRONG (non-prob) instead of MEPS (prob) to make inferences?

- If we had used the non-prob survey, how similar would the estimates be?
- Does similarity of results depend on purpose:
 - Estimation of population quantities? (proportions)
 - Establishment of associations between variables? (Odds Ratios)

-> Note that previous literature has been focused on population quantities, rather than on relationships between variables (which is more the focus of social scientists)
Research Question: Can a Non-Probability Survey be an Alternative to a Probability Survey?

Substitution: Could we use LIVESTRONG (non-prob) instead of MEPS (prob) to make inferences?

- Does similarity of results depend on weighting approach chosen:
 - **Post-stratification or raking**: Adjust LIVESTRONG data to distribution of demographic or other characteristics from MEPS
 - **Propensity Scoring Weighting**: Weight data by inverse of estimated propensity to be in the LIVESTRONG sample relative to MEPS (Lee, 2006)
Estimates for Variables used in Weighting

<table>
<thead>
<tr>
<th>Weighting variables: Age, Sex, Race/Ethnicity, Region</th>
<th>Probability: MEPS CSAQ</th>
<th>Non-Probability: LIVESTRONG SURVEY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n= 1,203</td>
<td>n= 5,394</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>175</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>50-64</td>
<td>390</td>
<td>32.4</td>
</tr>
<tr>
<td></td>
<td>32.3</td>
<td></td>
</tr>
<tr>
<td>65+</td>
<td>638</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td>54.6</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>468</td>
<td>38.9</td>
</tr>
<tr>
<td></td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>735</td>
<td>61.1</td>
</tr>
<tr>
<td></td>
<td>57.5</td>
<td></td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic, NH Black, NH Asian</td>
<td>273</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>930</td>
<td>77.3</td>
</tr>
<tr>
<td></td>
<td>87.1</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>185</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td>Midwest</td>
<td>294</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>475</td>
<td>39.5</td>
</tr>
<tr>
<td></td>
<td>40.7</td>
<td></td>
</tr>
<tr>
<td>West</td>
<td>249</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Raked to MEPS</th>
<th>Propensity Score Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.8</td>
<td>26.0</td>
</tr>
<tr>
<td>33.7</td>
<td>38.9</td>
</tr>
<tr>
<td>52.5</td>
<td>35.0</td>
</tr>
<tr>
<td>43.7</td>
<td>37.2</td>
</tr>
<tr>
<td>56.3</td>
<td>62.8</td>
</tr>
<tr>
<td>10.9</td>
<td>10.0</td>
</tr>
<tr>
<td>89.1</td>
<td>90.0</td>
</tr>
<tr>
<td>17.5</td>
<td>17.8</td>
</tr>
<tr>
<td>23.2</td>
<td>22.4</td>
</tr>
<tr>
<td>39.9</td>
<td>36.7</td>
</tr>
<tr>
<td>19.4</td>
<td>23.0</td>
</tr>
</tbody>
</table>
Estimates for Variables used in Weighting

<table>
<thead>
<tr>
<th>Weighting variables: Age, Sex, Race/Ethnicity, Region</th>
<th>Probability: MEPS CSAQ</th>
<th>Non-Probability: LIVESTRONG SURVEY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n= 1,203</td>
<td>n= 5,394</td>
</tr>
<tr>
<td></td>
<td>Unweighted</td>
<td>Weighted</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>175</td>
<td>14.5</td>
</tr>
<tr>
<td>50-64</td>
<td>390</td>
<td>32.4</td>
</tr>
<tr>
<td>65+</td>
<td>638</td>
<td>53.0</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>468</td>
<td>38.9</td>
</tr>
<tr>
<td>Female</td>
<td>735</td>
<td>61.1</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic, NH Black, NH Asian</td>
<td>273</td>
<td>22.7</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>930</td>
<td>77.3</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>185</td>
<td>15.4</td>
</tr>
<tr>
<td>Midwest</td>
<td>294</td>
<td>24.4</td>
</tr>
<tr>
<td>South</td>
<td>475</td>
<td>39.5</td>
</tr>
<tr>
<td>West</td>
<td>249</td>
<td>20.7</td>
</tr>
</tbody>
</table>
Estimates for Variables used in Weighting

<table>
<thead>
<tr>
<th>Weighting variables: Age, Sex, Race/Ethnicity, Region</th>
<th>Probability: MEPS CSAQ</th>
<th>Non-Probability: LIVESTRONG SURVEY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n= 1,203</td>
<td>n= 5,394</td>
</tr>
<tr>
<td></td>
<td>Unweighted</td>
<td>Weighted</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>175</td>
<td>14.5</td>
</tr>
<tr>
<td>50-64</td>
<td>390</td>
<td>32.4</td>
</tr>
<tr>
<td>65+</td>
<td>638</td>
<td>53.0</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>468</td>
<td>38.9</td>
</tr>
<tr>
<td>Female</td>
<td>735</td>
<td>61.1</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic, NH Black, NH Asian</td>
<td>273</td>
<td>22.7</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>930</td>
<td>77.3</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>185</td>
<td>15.4</td>
</tr>
<tr>
<td>Midwest</td>
<td>294</td>
<td>24.4</td>
</tr>
<tr>
<td>South</td>
<td>475</td>
<td>39.5</td>
</tr>
<tr>
<td>West</td>
<td>249</td>
<td>20.7</td>
</tr>
</tbody>
</table>
Estimates for Variables used in Weighting

<table>
<thead>
<tr>
<th>Weighting variables: Age, Sex, Race/Ethnicity, Region</th>
<th>Probability: MEPS CSAQ</th>
<th>Non-Probability: LIVESTRONG SURVEY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unweighted</td>
<td>Weighted</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>175</td>
<td>14.5</td>
</tr>
<tr>
<td>50-64</td>
<td>390</td>
<td>32.4</td>
</tr>
<tr>
<td>65+</td>
<td>638</td>
<td>53.0</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>468</td>
<td>38.9</td>
</tr>
<tr>
<td>Female</td>
<td>735</td>
<td>61.1</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic, NH Black, NH Asian</td>
<td>273</td>
<td>22.7</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>930</td>
<td>77.3</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>185</td>
<td>15.4</td>
</tr>
<tr>
<td>Midwest</td>
<td>294</td>
<td>24.4</td>
</tr>
<tr>
<td>South</td>
<td>475</td>
<td>39.5</td>
</tr>
<tr>
<td>West</td>
<td>249</td>
<td>20.7</td>
</tr>
</tbody>
</table>
Estimates for Variables used in Weighting

<table>
<thead>
<tr>
<th>Weighting variables: Age, Sex, Race/Ethnicity, Region</th>
<th>Probability: MEPS CSAQ</th>
<th>Non-Probability: LIVESTRONG SURVEY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 1,203</td>
<td>n = 5,394</td>
</tr>
<tr>
<td></td>
<td>Unweighted</td>
<td>Weighted</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>175</td>
<td>14.5</td>
</tr>
<tr>
<td>50-64</td>
<td>390</td>
<td>32.4</td>
</tr>
<tr>
<td>65+</td>
<td>638</td>
<td>53.0</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>468</td>
<td>38.9</td>
</tr>
<tr>
<td>Female</td>
<td>735</td>
<td>61.1</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic, NH Black, NH Asian</td>
<td>273</td>
<td>22.7</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>930</td>
<td>77.3</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>185</td>
<td>15.4</td>
</tr>
<tr>
<td>Midwest</td>
<td>294</td>
<td>24.4</td>
</tr>
<tr>
<td>South</td>
<td>475</td>
<td>39.5</td>
</tr>
<tr>
<td>West</td>
<td>249</td>
<td>20.7</td>
</tr>
</tbody>
</table>
Estimates: Other Socio-Demographic Variables

<table>
<thead>
<tr>
<th></th>
<th>Probability: MEPS CSAQ</th>
<th>Non-Probability: LIVESTRONG SURVEY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=1,203</td>
<td>Unweighted</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School graduate or less</td>
<td>606</td>
<td>50.4</td>
</tr>
<tr>
<td>Some college or more</td>
<td>597</td>
<td>49.6</td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time</td>
<td>302</td>
<td>25.1</td>
</tr>
<tr>
<td>Part-time</td>
<td>105</td>
<td>8.7</td>
</tr>
<tr>
<td>Retired</td>
<td>380</td>
<td>31.6</td>
</tr>
<tr>
<td>Not employed</td>
<td>416</td>
<td>34.6</td>
</tr>
<tr>
<td>Cancer type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>235</td>
<td>19.5</td>
</tr>
<tr>
<td>Prostate</td>
<td>159</td>
<td>13.2</td>
</tr>
<tr>
<td>Colorectal</td>
<td>59</td>
<td>4.9</td>
</tr>
<tr>
<td>Multiple</td>
<td>86</td>
<td>7.1</td>
</tr>
<tr>
<td>Other single cancers</td>
<td>664</td>
<td>55.2</td>
</tr>
</tbody>
</table>
Estimates: Major Outcome Variables

<table>
<thead>
<tr>
<th>EMPLOYMENT CHANGE</th>
<th>Probability: MEPS CSAQ (n = 676)</th>
<th></th>
<th>Non-Probability: LIVESTRONG SURVEY (n = 4,407)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unweighted</td>
<td>Weighted</td>
<td>Unweighted</td>
<td>Raked to MEPS</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
<tr>
<td>Change due to cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>42.2</td>
<td>39.6</td>
<td>35.6 - 43.8</td>
<td>77.3</td>
</tr>
<tr>
<td>No/Missing</td>
<td>57.8</td>
<td>60.4</td>
<td>56.2 - 64.4</td>
<td>22.7</td>
</tr>
<tr>
<td>Took paid time off</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>29.7</td>
<td>27.9</td>
<td>24.1 - 31.9</td>
<td>57.5</td>
</tr>
<tr>
<td>No / Missing</td>
<td>70.3</td>
<td>72.1</td>
<td>68.1 - 75.9</td>
<td>42.5</td>
</tr>
<tr>
<td>Took unpaid time off</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>18.5</td>
<td>18.0</td>
<td>15.0 - 21.5</td>
<td>36.5</td>
</tr>
<tr>
<td>No / Missing</td>
<td>81.5</td>
<td>82.0</td>
<td>78.5 - 85.0</td>
<td>63.5</td>
</tr>
<tr>
<td>Full-time to part-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8.4</td>
<td>7.0</td>
<td>5.0 - 9.8</td>
<td>23.3</td>
</tr>
<tr>
<td>No / Missing</td>
<td>91.6</td>
<td>93.0</td>
<td>90.2 - 95.0</td>
<td>76.7</td>
</tr>
<tr>
<td>Part-time to full-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5.2</td>
<td>5.0</td>
<td>3.3 - 7.7</td>
<td>12.4</td>
</tr>
<tr>
<td>No / Missing</td>
<td>94.8</td>
<td>95.0</td>
<td>92.3 - 96.7</td>
<td>87.6</td>
</tr>
</tbody>
</table>
Estimates: Major Outcome Variables

<table>
<thead>
<tr>
<th>EMPLOYMENT CHANGE</th>
<th>Probability: MEPS CSAQ (n = 676)</th>
<th>Non-Probability: LIVESTRONG SURVEY (n = 4,407)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unweighted</td>
<td>Weighted</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Change due to cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>42.2</td>
<td>39.6</td>
</tr>
<tr>
<td>No/Missing</td>
<td>57.8</td>
<td>60.4</td>
</tr>
<tr>
<td>Took paid time off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>29.7</td>
<td>27.9</td>
</tr>
<tr>
<td>No / Missing</td>
<td>70.3</td>
<td>72.1</td>
</tr>
<tr>
<td>Took unpaid time off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>18.5</td>
<td>18.0</td>
</tr>
<tr>
<td>No / Missing</td>
<td>81.5</td>
<td>82.0</td>
</tr>
<tr>
<td>Full-time to part-time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8.4</td>
<td>7.0</td>
</tr>
<tr>
<td>No / Missing</td>
<td>91.6</td>
<td>93.0</td>
</tr>
<tr>
<td>Part-time to full-time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5.2</td>
<td>5.0</td>
</tr>
<tr>
<td>No / Missing</td>
<td>94.8</td>
<td>95.0</td>
</tr>
<tr>
<td>EMPLOYMENT CHANGE</td>
<td>Probability: MEPS CSAQ (n = 676)</td>
<td>Non-Probability: LIVESTRONG SURVEY (n = 4,407)</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Unweighted</td>
<td>Weighted</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Change due to cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>42.2</td>
<td>39.6</td>
</tr>
<tr>
<td>No/Missing</td>
<td>57.8</td>
<td>60.4</td>
</tr>
<tr>
<td>Took paid time off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>29.7</td>
<td>27.9</td>
</tr>
<tr>
<td>No / Missing</td>
<td>70.3</td>
<td>72.1</td>
</tr>
<tr>
<td>Took unpaid time off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>18.5</td>
<td>18.0</td>
</tr>
<tr>
<td>No / Missing</td>
<td>81.5</td>
<td>82.0</td>
</tr>
<tr>
<td>Full-time to part-time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8.4</td>
<td>7.0</td>
</tr>
<tr>
<td>No / Missing</td>
<td>91.6</td>
<td>93.0</td>
</tr>
<tr>
<td>Part-time to full-time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5.2</td>
<td>5.0</td>
</tr>
<tr>
<td>No / Missing</td>
<td>94.8</td>
<td>95.0</td>
</tr>
</tbody>
</table>
| FINANCIAL BURDEN | Probability: MEPS CSAQ
| | (n = 1,203) | Non-Probability: LIVESTRONG SURVEY
<p>| | Unweighted | Weighted | Unweighted | Raked to MEPS | Propensity Score Weighting |
| Because of cancer: | % | % | 95% CI | % | % | “95% CI” | % | “95% CI” |
| Borrowed money or went into debt | | | | | | | | |
| Yes | 8.6 | 7.1 | 5.7 - 8.9 | 30.0 | 22.0 | 20.5 - 23.5 | 26.0 | 24.7 - 27.3 |
| No / Missing | 91.4 | 92.9 | 91.1 - 94.3 | 70.0 | 78.0 | 76.5 - 79.5 | 74.0 | 72.7 - 75.3 |
| Filed for bankruptcy | | | | | | | | |
| Yes | 1.5 | 1.7 | 1.0 - 2.8 | 2.7 | 2.1 | 1.6 - 2.8 | 2.5 | 2.0 - 3.0 |
| No / Missing | 98.5 | 98.3 | 97.2 - 99.0 | 97.3 | 97.9 | 97.2 - 98.4 | 97.5 | 97.0 - 98.0 |
| Made other financial sacrifices | | | | | | | | |
| Yes | 9.8 | 9.4 | 7.6 - 11.5 | 36.6 | 28.4 | 26.7 - 30.2 | 32.6 | 31.2 - 34.0 |
| No / Missing | 90.2 | 90.6 | 88.5 - 92.4 | 63.4 | 71.6 | 69.8 - 73.3 | 67.4 | 66.0 - 68.8 |
| Unable to cover medical costs | | | | | | | | |
| Yes | 13.6 | 11.9 | 9.8 - 14.3 | 23.5 | 17.7 | 16.3 - 19.2 | 20.7 | 19.6 - 22.0 |
| No / Missing | 86.4 | 88.1 | 85.7 - 90.2 | 76.5 | 82.3 | 80.8 - 83.7 | 79.3 | 78.0 - 80.4 |
| Financial impact | | | | | | | | |
| Yes | 22.8 | 20.4 | 17.7 - 23.4 | 49.9 | 39.1 | 37.2 - 41.1 | 44.6 | 43.1 - 46.2 |
| No / Missing | 77.2 | 79.6 | 76.6 - 82.3 | 50.1 | 60.9 | 58.9 - 62.8 | 55.4 | 53.8 - 56.9 |</p>
<table>
<thead>
<tr>
<th>FINANCIAL BURDEN</th>
<th>Probability: MEPS CSAQ (n = 1,203)</th>
<th>Non-Probability: LIVESTRONG SURVEY (n = 5,394)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unweighted</td>
<td>Weighted</td>
</tr>
<tr>
<td>Because of cancer:</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Borrowed money or went into debt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8.6</td>
<td>7.1</td>
</tr>
<tr>
<td>No / Missing</td>
<td>91.4</td>
<td>92.9</td>
</tr>
<tr>
<td>Filed for bankruptcy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>No / Missing</td>
<td>98.5</td>
<td>98.3</td>
</tr>
<tr>
<td>Made other financial sacrifices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>9.8</td>
<td>9.4</td>
</tr>
<tr>
<td>No / Missing</td>
<td>90.2</td>
<td>90.6</td>
</tr>
<tr>
<td>Unable to cover medical costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>13.6</td>
<td>11.9</td>
</tr>
<tr>
<td>No / Missing</td>
<td>86.4</td>
<td>88.1</td>
</tr>
<tr>
<td>Financial impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>22.8</td>
<td>20.4</td>
</tr>
<tr>
<td>No / Missing</td>
<td>77.2</td>
<td>79.6</td>
</tr>
</tbody>
</table>
Financial Burden

<table>
<thead>
<tr>
<th>Financial Burden</th>
<th>Probability: MEPS CSAQ (n = 1,203)</th>
<th>Non-Probability: LIVESTRONG SURVEY (n = 5,394)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unweighted</td>
<td>Weighted</td>
</tr>
<tr>
<td>Because of cancer:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrowed money or went into debt</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Yes</td>
<td>8.6</td>
<td>7.1</td>
</tr>
<tr>
<td>No / Missing</td>
<td>91.4</td>
<td>92.9</td>
</tr>
<tr>
<td>Filed for bankruptcy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>No / Missing</td>
<td>98.5</td>
<td>98.3</td>
</tr>
<tr>
<td>Made other financial sacrifices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>9.8</td>
<td>9.4</td>
</tr>
<tr>
<td>No / Missing</td>
<td>90.2</td>
<td>90.6</td>
</tr>
<tr>
<td>Unable to cover medical costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>13.6</td>
<td>11.9</td>
</tr>
<tr>
<td>No / Missing</td>
<td>86.4</td>
<td>88.1</td>
</tr>
<tr>
<td>Financial impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>22.8</td>
<td>20.4</td>
</tr>
<tr>
<td>No / Missing</td>
<td>77.2</td>
<td>79.6</td>
</tr>
</tbody>
</table>
Association Between Variables: Adjusted ORs

IV's: Patient Characteristics (1)

DV: ANY Financial impact

<table>
<thead>
<tr>
<th></th>
<th>Probability Survey: MEPS CSAQ (n = 1,201)</th>
<th>Non-Probability Survey: LIVESTRONG SURVEY (n=5,394)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weighted OR (95% CI)</td>
<td>Unweighted OR (“95% CI”)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>3.41 (2.14 - 5.41)</td>
<td>4.13 (3.44 - 4.96)</td>
</tr>
<tr>
<td>50-64</td>
<td>1.73 (1.19 - 2.54)</td>
<td>2.68 (2.24 - 3.19)</td>
</tr>
<tr>
<td>65+</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Female</td>
<td>1.38 (0.93 - 2.05)</td>
<td>1.27 (1.13 - 1.43)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school or less</td>
<td>1.04 (0.72 - 1.51)</td>
<td>1.44 (1.16 - 1.77)</td>
</tr>
<tr>
<td>Any college</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Race / Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic, NH Black, NH Asian</td>
<td>2.21 (1.51 - 3.23)</td>
<td>1.23 (1.00 - 1.53)</td>
</tr>
<tr>
<td>Non-Hispanic Other</td>
<td>REF</td>
<td>REF</td>
</tr>
</tbody>
</table>
Association Between Variables: Adjusted ORs

IV's: Patient Characteristics (1)

DV: ANY Financial impact

<table>
<thead>
<tr>
<th>Probability Survey: MEPS CSAQ (n = 1,201)</th>
<th>Non-Probability Survey: LIVESTRONG SURVEY (n=5,394)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted</td>
<td>Unweighted</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td>OR (“95% CI”)</td>
</tr>
</tbody>
</table>

Age group

<table>
<thead>
<tr>
<th></th>
<th>Weighted</th>
<th>Unweighted</th>
<th>Weighted to MEPS</th>
<th>Propensity Score Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-49</td>
<td>3.41 (2.14 - 5.41)</td>
<td>4.13 (3.44 - 4.96)</td>
<td>3.86 (3.11 - 4.80)</td>
<td>3.95 (3.25 - 4.80)</td>
</tr>
<tr>
<td>50-64</td>
<td>1.73 (1.19 - 2.54)</td>
<td>2.68 (2.24 - 3.19)</td>
<td>2.58 (2.13 - 3.13)</td>
<td>2.60 (2.16 - 3.12)</td>
</tr>
<tr>
<td>65+</td>
<td>REF</td>
<td>REF</td>
<td>REF</td>
<td>REF</td>
</tr>
</tbody>
</table>

Sex

<table>
<thead>
<tr>
<th></th>
<th>Weighted</th>
<th>Unweighted</th>
<th>Weighted to MEPS</th>
<th>Propensity Score Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>REF</td>
<td>REF</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Female</td>
<td>1.38 (0.93 - 2.05)</td>
<td>1.27 (1.13 - 1.43)</td>
<td>1.38 (1.15 - 1.65)</td>
<td>1.33 (1.16 - 1.53)</td>
</tr>
</tbody>
</table>

Education

<table>
<thead>
<tr>
<th></th>
<th>Weighted</th>
<th>Unweighted</th>
<th>Weighted to MEPS</th>
<th>Propensity Score Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>High school or less</td>
<td>1.04 (0.72 - 1.51)</td>
<td>1.44 (1.16 - 1.77)</td>
<td>1.30 (0.96 - 1.77)</td>
<td>1.36 (1.07 - 1.73)</td>
</tr>
<tr>
<td>Any college</td>
<td>REF</td>
<td>REF</td>
<td>REF</td>
<td>REF</td>
</tr>
</tbody>
</table>

Race / Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>Weighted</th>
<th>Unweighted</th>
<th>Weighted to MEPS</th>
<th>Propensity Score Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic, NH Black, NH Asian</td>
<td>2.21 (1.51 - 3.23)</td>
<td>1.23 (1.00 - 1.53)</td>
<td>1.48 (1.02 - 2.14)</td>
<td>1.40 (1.04 - 1.87)</td>
</tr>
<tr>
<td>Non-Hispanic Other</td>
<td>REF</td>
<td>REF</td>
<td>REF</td>
<td>REF</td>
</tr>
</tbody>
</table>
Association Between Variables: Adjusted ORs

<table>
<thead>
<tr>
<th>IV's: Patient Characteristics (1)</th>
<th>Probability Survey: MEPS CSAQ (n = 1,201)</th>
<th>Non-Probability Survey: LIVESTRONG SURVEY (n=5,394)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weighted</td>
<td>Unweighted</td>
</tr>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>OR (“95% CI”)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>3.41 (2.14 - 5.41)</td>
<td>4.13 (3.44 - 4.96)</td>
</tr>
<tr>
<td>50-64</td>
<td>1.73 (1.19 - 2.54)</td>
<td>2.68 (2.24 - 3.19)</td>
</tr>
<tr>
<td>65+</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Female</td>
<td>1.38 (0.93 - 2.05)</td>
<td>1.27 (1.13 - 1.43)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school or less</td>
<td>1.04 (0.72 - 1.51)</td>
<td>1.44 (1.16 - 1.77)</td>
</tr>
<tr>
<td>Any college</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Race / Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic, NH Black, NH Asian</td>
<td>2.21 (1.51 - 3.23)</td>
<td>1.23 (1.00 - 1.53)</td>
</tr>
<tr>
<td>Non-Hispanic Other</td>
<td>REF</td>
<td>REF</td>
</tr>
</tbody>
</table>
Association Between Variables: Adjusted ORs

<table>
<thead>
<tr>
<th>IV's: Patient Characteristics (1)</th>
<th>Probability Survey: MEPS CSAQ (n = 1,201)</th>
<th>Non-Probability Survey: LIVESTRONG SURVEY (n=5,394)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weighted</td>
<td>Unweighted</td>
</tr>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>OR (“95% CI”)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>3.41 (2.14 - 5.41)</td>
<td>4.13 (3.44 - 4.96)</td>
</tr>
<tr>
<td>50-64</td>
<td>1.73 (1.19 - 2.54)</td>
<td>2.68 (2.24 - 3.19)</td>
</tr>
<tr>
<td>65+</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Female</td>
<td>1.38 (0.93 - 2.05)</td>
<td>1.27 (1.13 - 1.43)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school or less</td>
<td>1.04 (0.72 - 1.51)</td>
<td>1.44 (1.16 - 1.77)</td>
</tr>
<tr>
<td>Any college</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Race / Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic, NH Black, NH Asian</td>
<td>2.21 (1.51 - 3.23)</td>
<td>1.23 (1.00 - 1.53)</td>
</tr>
<tr>
<td>Non-Hispanic Other</td>
<td>REF</td>
<td>REF</td>
</tr>
</tbody>
</table>
Association Between Variables: Adjusted ORs

<table>
<thead>
<tr>
<th>IV’s: Patient Characteristics (1)</th>
<th>Probability Survey: MEPS CSAQ (n = 1,201)</th>
<th>Non-Probability Survey: LIVESTRONG SURVEY (n=5,394)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weighted</td>
<td>Unweighted</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>3.41 (2.14 - 5.41)</td>
<td>4.13 (3.44 - 4.96)</td>
</tr>
<tr>
<td>50-64</td>
<td>1.73 (1.19 - 2.54)</td>
<td>2.68 (2.24 - 3.19)</td>
</tr>
<tr>
<td>65+</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Female</td>
<td>1.38 (0.93 - 2.05)</td>
<td>1.27 (1.13 - 1.43)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school or less</td>
<td>1.04 (0.72 - 1.51)</td>
<td>1.44 (1.16 - 1.77)</td>
</tr>
<tr>
<td>Any college</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Race / Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic, NH Black, NH Asian</td>
<td>2.21 (1.51 - 3.23)</td>
<td>1.23 (1.00 - 1.53)</td>
</tr>
<tr>
<td>Non-Hispanic Other</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>IV's: Patient Characteristics (2)</td>
<td>Probability Survey: MEPS CSAQ (n = 1,201)</td>
<td>Non-Probability Survey: LIVESTRONG SURVEY (n=5,394)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Not married</td>
<td>1.27 (0.90 - 1.79)</td>
<td>1.46 (1.29 - 1.65)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Midwest</td>
<td>1.66 (0.85 - 3.26)</td>
<td>1.14 (0.96 - 1.35)</td>
</tr>
<tr>
<td>South</td>
<td>2.01 (1.11 - 3.65)</td>
<td>1.54 (1.31 - 1.81)</td>
</tr>
<tr>
<td>West</td>
<td>2.05 (1.05 - 4.02)</td>
<td>1.40 (1.19 - 1.65)</td>
</tr>
<tr>
<td>Years since first cancer diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>1.69 (0.99 - 2.88)</td>
<td>1.05 (0.88 - 1.25)</td>
</tr>
<tr>
<td>6-10</td>
<td>1.55 (1.06 - 2.27)</td>
<td>1.05 (0.90 - 1.23)</td>
</tr>
<tr>
<td>11+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Association Between Variables: Adjusted ORs

<table>
<thead>
<tr>
<th>IV's: Patient Characteristics (2)</th>
<th>Probability Survey: MEPS CSAQ (n = 1,201)</th>
<th>Non-Probability Survey: LIVESTRONG SURVEY (n=5,394)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV: ANY Financial impact</td>
<td>Weighted</td>
<td>Unweighted</td>
</tr>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>OR (“95% CI”)</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Not married</td>
<td>1.27 (0.90 - 1.79)</td>
<td>1.46 (1.29 - 1.65)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Midwest</td>
<td>1.66 (0.85 - 3.26)</td>
<td>1.14 (0.96 - 1.35)</td>
</tr>
<tr>
<td>South</td>
<td>2.01 (1.11 - 3.65)</td>
<td>1.54 (1.31 - 1.81)</td>
</tr>
<tr>
<td>West</td>
<td>2.05 (1.05 - 4.02)</td>
<td>1.40 (1.19 - 1.65)</td>
</tr>
<tr>
<td>Years since first cancer diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>1.69 (0.99 - 2.88)</td>
<td>1.05 (0.88 - 1.25)</td>
</tr>
<tr>
<td>2-5</td>
<td>1.55 (1.06 - 2.27)</td>
<td>1.05 (0.90 - 1.23)</td>
</tr>
<tr>
<td>6-10</td>
<td>1.37 (0.86 - 2.20)</td>
<td>1.10 (0.93 - 1.31)</td>
</tr>
<tr>
<td>11+</td>
<td>REF</td>
<td>REF</td>
</tr>
</tbody>
</table>
Association Between Variables: Adjusted ORs

<table>
<thead>
<tr>
<th>IV's: Patient Characteristics (2)</th>
<th>Probability Survey: MEPS CSAQ (n = 1,201)</th>
<th>Non-Probability Survey: LIVESTRONG SURVEY (n=5,394)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weighted</td>
<td>Unweighted</td>
</tr>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>OR ("95% CI")</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Not married</td>
<td>1.27 (0.90 - 1.79)</td>
<td>1.46 (1.29 - 1.65)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>Midwest</td>
<td>1.66 (0.85 - 3.26)</td>
<td>1.14 (0.96 - 1.35)</td>
</tr>
<tr>
<td>South</td>
<td>2.01 (1.11 - 3.65)</td>
<td>1.54 (1.31 - 1.81)</td>
</tr>
<tr>
<td>West</td>
<td>2.05 (1.05 - 4.02)</td>
<td>1.40 (1.19 - 1.65)</td>
</tr>
<tr>
<td>Years since first cancer diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>1.69 (0.99 - 2.88)</td>
<td>1.05 (0.88 - 1.25)</td>
</tr>
<tr>
<td>2-5</td>
<td>1.55 (1.06 - 2.27)</td>
<td>1.05 (0.90 - 1.23)</td>
</tr>
<tr>
<td>6-10</td>
<td>1.37 (0.86 - 2.20)</td>
<td>1.10 (0.93 - 1.31)</td>
</tr>
<tr>
<td>11+</td>
<td>REF</td>
<td>REF</td>
</tr>
</tbody>
</table>
Analysis/Interpretation Challenge: Comparing the Results of Prob and Non-Prob Surveys

What is our decision rule? - *are the key estimates or measures of association ‘close’?*

- *Statistically significantly different at particular p level?*
 Requires measure of variance for the Non-Prob sample, which we do not have!

- *Can we pick a particular value (e.g., within 5% – arbitrary)?*

- *Or is this a ‘qualitative assessment’ concerning “Fitness for Use”: e.g., is associated with cancer survivors’ financial and employment burden*

We do not propose a resolution - but relied mainly on consensus concerning patterns in the data
(Tentative) Conclusions

For estimation of (absolute) population quantities:
- For our measures of financial burden and employment, estimates from LIVESTRONG non-probability sample were generally not ‘close’ to those of the MEPS-CSAQ probability sample

For associations (relative measures):
- Analysis of associations, via regression analysis, illustrated more similarity between surveys

Overall:
- Bias due to non-probability sampling may be more of a problem for quantity estimation
Limitations

- **Mode confounding?** MEPS-CSAQ was paper-based, LIVESTRONG a web survey
- **MEPS contains sampling error**
 - Implication for control totals
 - Some cell sizes are very small
 - Challenges in variance estimation
 - *We could consider investigating other sources of control totals (e.g. NHIS)*
Work in Progress and Next Steps:

1) Consider alternative methods to weight LIVESTRONG non-probability survey
 • Include additional socio-demographic variables and characteristics that are significant predictors of outcomes in the raking dimensions
 • Combine propensity score weighting and raking

2) Develop Jackknife-type replicate weights
 • To get better estimates of the standard errors for the non-probability sample
3) Rather than **Substitution**, try **Combination**:

- Can LIVESTRONG supplement the MEPS sample?:

 -> Can non-prob data (*LIVESTRONG*) be combined with prob data (*MEPS-CSAQ*) to increase sample size, and therefore power?

- To enable this, can a variance estimation approach to the LIVESTRONG data render them combinable with the MEPS data?

 -> Again, we need to work on variance estimation for the non-probability survey!